

MECHANICAL VENTILATION DURING CRITICAL CARE AIR TRANSPORT (CCAT) CLINICAL PRACTICE GUIDELINE

Publication date: 12 Oct 2013 Certified current by the U.S. Air Force Mobility Command as of 14 Dec 2021

Table of Contents

Background & Introduction	. 2
Determining Stability for Flight	. 2
Pre-flight Preparation	
Ventilator	3
Oxygen	3
Patient Preparation	4
Basic Ventilator Management	. 5
Mode of Ventilation	5
Ventilator Settings	5
Alarms	6
Ongoing Management	. 6
Airway Suctioning	6
ET Tube Cuff Pressure	7
Mouth Care	
Monitoring and Adjusting Ventilator Settings	7
Management of Oxygen Desaturation	7
Monitoring oxygen utilization	8
Appendix A: Oxygen Requirements	. 9
Appendix B: Mechanical Ventilation in ARDS	10
Volume Control Ventilation	
Pressure Control Ventilation	10
Tidal Volumes for Ventilation of Patients with ARDS – ARDSNET ARMA Trial	10

Background & Introduction

- 1. Mechanical ventilation can injure the lung. Appropriate ventilator strategies will minimize ventilator induced lung injury.
- 2. Lung protective ventilation is appropriate for most CCAT patients, even if they do not have Acute Respiratory Distress Syndrome (ARDS).
 - a. The same pathophysiologic processes are likely at work, even if they have not reached a level that meets the formal ARDS definition.
 - b. There is evidence that lung protective ventilation decreases ARDS development in patients at risk, which describes most CCAT patients.
- 3. This document closely follows the ventilation strategy from the ARDS Network ARMA trial.
 - a. This is the least harmful strategy formally studied and validated in a large trial.
 - b. Some experts may choose to deviate from the strategy in an individual patient.
 - c. The strategy has been modified in some respects to simplify its use.

Determining Stability for Flight

- 1. Stability for flight is a multi-factorial decision based on the patient, sending facility, CCAT team, and flight characteristics.
- 2. Patient characteristics
 - a. PEEP and FIO2
 - i. PEEP / F₁O₂ greater than 14/70% (See <u>Appendix B</u>.) should prompt careful consideration of risks and benefits. Such patients have little room to increase F¹O₂ or mean airway pressure if their condition worsens during flight. This does not mean patients on these settings cannot be transported safely.
 - ii. All patients, including those on mechanical ventilation, will experience a decrease in PO2as ambient pressure decreases.
 - Patients with marginal gas exchange will require additional support during flight.
 - Cabin altitude restriction will lessen the impact on gas exchange.
 - b. Patients on aggressive support that has been stable over time are better candidates for transport than those with increasing support leading up to flight time.
 - c. Concurrent hemodynamic compromise or traumatic brain injury will complicate ventilator management and should be considered in assessing stability for flight.
- 3. Sending facility characteristics
 - a. Type of ventilators available
 - b. Availability of rescue therapies (proning, inhaled nitric oxide/prostacyclin, advanced mechanical ventilation techniques, etc.)
 - c. Personnel experience and expertise

- d. Current beds available and anticipated casualties
- 4. Expertise of CCAT team members with advanced mechanical ventilation strategies
- 5. Flight characteristics
 - a. Flight duration
 - b. Aircraft type
 - c. Patient load and complexity
 - d. Altitude restriction

Pre-flight Preparation

Ventilator

- 1. Most patients can be safely transported using the Impact 731 ventilator.
 - a. Allows for volume control or pressure control ventilation.
 - b. Altitude compensated.
 - c. Rated for patients 5kg and above.
 - d. Cannot do inverse ratio.
- 2. The LTV 1000 ventilator offers additional capability needed in some patients but also has limitations.
 - a. Inverse ratio ventilation.
 - b. Better choice for pediatric transports.
 - c. Unable to compensate for altitude.
 - d. Unable to achieve 100% Fi02 due to turbine (93-94% highest Fi0₂ attainable).

Oxygen

- 1. Oxygen requirements should be calculated for all patients.
 - a. The LTV 1000 with high F₁O₂ and minute ventilation can exhaust a full Portable Therapeutic Liquid Oxygen System (PTLOX) during along mission. Never forego the oxygen calculation.
 - b. Refer to Appendix A.
 - There is no safety factor in the calculations.
 - Additional oxygen beyond calculated requirement should be determined by each team on a case by case basis based on patient and transport characteristics.
- 2. Each mechanically ventilated patient should ideally have a dedicated PTLOX.
- 3. It is possible to have two patients on one PTLOX; Aeromedical Evacuation will make that determination if necessary.

Patient Preparation

- 1. Note endotracheal (ET) tube depth at the teeth that correlates to appropriate placement by CXR.
- 2. Secure ET tube using a dedicated securing device.
 - a. If burns or facial trauma preclude this, consider securing tube to upper central incisor using silk suture or wire.
 - b. Be certain that lips and tongue are not injured by device.
- 3. Avoid exposing airway to atmospheric pressure during ventilator changeover if PEEP is \geq 10cm H₂O.
 - a. Lung de-recruitment occurs rapidly with exposure to atmospheric pressure.
 - b. Gently clamp ET tube using a Kelly clamp while the circuit is broken for ventilator changeover.
 - c. Pad the Kelly clamp with tape or short pieces of rubber tubing to avoid damage to the ET tube.
 - d. Do not clamp wire reinforced tubes as they will kink permanently.
- 4. All ventilated patients should have a heat-moisture exchanger in place.
- 5. Check ET tube cuff pressure prior to departure.
 - a. Proper ET tube cuff inflation is mandatory to avoid aspiration, de-recruitment and ventilator malfunction (pressure too low) or damage to tracheal mucosa (pressure too high).
 - b. Palpating ET tube cuff is inaccurate and should not be relied upon to estimate cuff pressure. *Use a cuff manometer*.
 - c. Goal is 20 30 cm H₂O (15-22 mm Hg).
 - d. ET tube cuffs should be filled with air. Do not use saline.
- 6. All ventilated patients should have the head of bed elevated at least 30° unless there is a contraindication.
 - a. Most patients will not have a contraindication. Ask the sending physician or neurosurgeon for clarification if necessary.
 - b. The backrest designed for the NATO litter is the most appropriate way to elevate the head of bed.
- 7. All ventilated patients should have continuous ETCO₂ monitoring.
 - a. Use caution interpreting the absolute value as it may not accurately reflect PaCO₂.
 - The difference between PaCO₂ and ETCO₂ reflects dead space, which can change rapidly in critically ill patients.
 - There is also likely to be some measurement error.
 - b. The true value is the ability to immediately detect circuit disconnections and ventilator failures by observing changes in the waveform and to identify trends in CO₂ that may prompt arterial blood gas measurement.
 - c. Providers skilled with ETCO₂ monitoring may infer hemodynamic data from ETCO₂ data.
- 8. All ventilated patients require gastric decompression prior to flight. Oro-gastric tube preferred to naso-gastric tube to prevention sinusitis.

- 9. Consider repeat CXR if > 12 hours has elapsed since most recent one or clinical condition has changed significantly.
- 10. Tube feeds not administered through a small bowel feeding tube should be discontinued prior to flight.

Basic Ventilator Management

Mode of Ventilation

- 1. Avoiding injurious ventilator settings is far more important than the mode of ventilation.
- 2. There is no outcome based evidence favoring one mode of ventilation over another.
- 3. Patients in the landmark ARDSNet ARMA trial were all ventilated in volume control ventilation.
- 4. Pressure control has some theoretical advantages:
 - Decelerating flow waveform is more comfortable and may improve gas mixing.
 - Inverting I:E ratio is an option for increasing the mean airway pressure that is not available on the Impact 731.

Ventilator Settings

- 1. Tidal Volume (V_T)
 - a. If using volume control:
 - i. Start with V_T at 6 cc/kg
 - ii. Decrease V_T as needed to achieve peak inspiratory pressure (PIP) \leq 35 (preferably \leq 30)
 - iii. Do not go below $V_T = 4 \text{ cc/kg}$.
 - b. If using pressure control:
 - i. Start with PIP 30-35 cm H_2O .
 - The difference between PEEP and PIP will determine V_T and is known as driving pressure or ΔP.
 - Changes in PEEP or PIP without concomitant changes in the other will change ΔP , thereby changing V_T .
 - ii. Incrementally decrease ΔP (by decreasing PIP and/or increasing PEEP) as needed to achieve $V_T = 6$ cc/kg.
 - iii. It is acceptable to target a V_T as low as 4 cc/kg if required to maintain PIP \leq 30 35cm H₂O.
 - c. Tidal volume should be based on predicted body weight (PBW) according to: PBW = 50+2.3 (height in inches 60) for males. Refer to <u>Appendix B</u>.
 - d. $V_T = 8$ cc/kg is acceptable in spontaneously breathing patients who are fighting the ventilator as long as the PIP or set pressure remains \leq 35 (preferably \leq 30).
 - e. Do not increase tidal volume to control pCO₂.

- 2. Respiratory Rate
 - a. Respiratory rate should be 6 35
 - b. Adjust to achieve $pH \ge 7.3$
 - c. The actual pCO₂ is not important, only the pH. ***Not applicable to TBI patients***
 - Respiratory acidosis is typically very well tolerated.
 - Trying to normalize pCO₂ will worsen ventilator induced lung injury.
- 3. PEEP and FIO2
 - a. Set initial PEEP and F_1O_2 based on MTF settings or your best estimate of what the patient needs. Minimum PEEP is 5 cm H_2O .
 - b. Titrate PEEP and F₁O₂ to achieve SaO₂ 92 96% according to the ARDSNet ARMA table in <u>Appendix B</u>.
 - c. Recheck PIP and V_T after any change in PEEP. Adjust V_T or ΔP as needed.
 - i. Increasing PEEP may increase PIP and necessitate decreasing V_{T} in volume control ventilation.
 - ii. The LTV 1000 and 731 ventilators are not PEEP compensated.
 - Increasing PEEP without a concomitant increase in PIP will decrease ΔP and V_T.
 - Decreasing PEEP without a concomitant decrease in PIP will increase ΔP and V_T.

Alarms

- 1. Alarms should be set to alert the team to malfunctions or changes in physiology without causing frequent false alarms. The following guidance is a starting point but each team will determine appropriate alarm settings for each mission.
- 2. Suggested initial settings
 - a. High pressure alarm should be set 50% above the baseline PIP (1.5 X current PIP).
 - b. Low pressure alarm should be set 50% below the baseline PIP (0.5 X current PIP).
 - c. High respiratory rate alarm (731 only) should be set 10 above the patient's respiratory rate.
 - d. Low respiratory rate alarm (731 only) should be set 10 below the set rate.
 - e. Minute ventilation alarm (LTV 1000 only) should be set 50 % below the baseline minute ventilation (0.5 X current minute ventilation)

Ongoing Management

Airway Suctioning

- 1. Suctioning every 4 hours is appropriate without copious secretions or mucous plugging.
- 2. Frequent suctioning may lead to lung de-recruitment and worsen gas exchange in patients with ARDS.

ET Tube Cuff Pressure

- 1. Significant changes may occur on ascent and descent (pressure increases with ascent, decreases with descent).
- 2. Pressure should be checked and documented with manometer before departure, at cruise altitude, during descent and after landing.

Mouth Care

- 1. Regular mouth care decreases the ventilator associated pneumonia risk.
- 2. Chlorhexidine is the preferred agent.
- 3. Recommended frequency is every 4 hours, workload permitting. Document on 3899.

Monitoring and Adjusting Ventilator Settings

- 1. Lung mechanics and gas exchange may change considerably during a long transport.
- 2. It is imperative to monitor for changes and adjust ventilator settings to meet mechanical ventilation goals.
- 3. Excessive V_T and inspiratory pressures are harmful and should be corrected when they are identified.
 - In volume control ventilation, incrementally change V_T by 50 cc's every 10 minutes until the desired values are achieved.
 - In pressure control ventilation, incrementally change PIP by 2 cm H₂O every 10 minutes until the desired values are achieved.
- 4. SaO₂ should be maintained 92 96% by titrating F_1O_2 and PEEP according to the ARDSNet ARMA table.
 - a. F_1O_2 can be weaned up or down rapidly as any adverse effects can be quickly remedied by reversing the change.
 - b. PEEP decreases
 - Rapid decreases may cause lung de-recruitment that is harmful and difficult to reverse.
 - Decrease by no more than 3 cm H₂O in a six-hour period.
 - c. PEEP increases
 - Increasing PEEP can decrease cardiac output by decreasing venous return to the heart.
 - Volume loading may be needed as PEEP increases, especially when PEEP exceeds 10cm H₂O.

Management of Oxygen Desaturation

- 1. Confirm ET tube is in trachea using ETCO₂.
- 2. If desaturation is severe switch immediately to manual bag ventilation with high flow oxygen and PEEP valve.
- 3. Exclude equipment malfunction, loss of O2 supply, circuit disconnection.

- 4. Suction the airway (consider simultaneous bag ventilation) to verify patency and clear mucous plugs.
- 5. Consider increasing sedation or pharmacological paralysis if ventilator dysynchrony is present.
- 6. Consider pneumothorax/hemothorax.
 - a. Review peak pressure trend if using volume ventilation.
 - b. Review VT trend if using pressure control ventilation. V_T will decrease if significant pneumothorax develops and ΔP is not changed.
 - c. Evaluate existing chest tubes for proper function.
 - d. Needle decompress the chest and place a chest tube if there is suspicion of pneumothorax and concurrent hemodynamic compromise.
- 7. Consider recruitment maneuver and increasing PEEP to next level on titration table.
 - a. Additional lung can often be recruited using sustained inflations of the lung.
 - b. Classic recruitment maneuver consists of inflation to 30-40 cm H₂O for 30-40 seconds, which is difficult to do on transport ventilators.
 - c. Recruitment maneuver can be performed with bag-valve manual ventilation.
 - i. Set PEEP valve on bag-valve unit to $15-20 \text{ cm H}_2O$.
 - ii. Deliver five sequential breaths, each held for 5-8 seconds.
 - iii. Watch blood pressure closely and terminate maneuver immediately if hypotension develops.
 - iv. Clamp endotracheal tube while switching between ventilator and bag. Exposure to atmospheric pressure will quickly result in lung derecruitment, hypoxemia and increased ventilator induced lung injury.

Monitoring Oxygen Utilization

- 1. When using PTLOX, periodically check amount of oxygen consumed.
- 2. Oxygen consumption may vary between ventilators, even with the same settings.
- 3. Leaks in system may cause excessive oxygen consumption.
- 4. Comparing actual to predicted oxygen consumption will allow early detection of excess utilization that may necessitate troubleshooting, changes in management or diverting aircraft in extreme cases.

Appendix A: Oxygen Requirements

_						120											
_						Liters	of Gase	ous Oxy	•		Per Hour						
-	4	5	6	7	8	9	10	11	ute Ventil	ation 13	14	15	16	17	10	19	20
0.3	96	103	109	116	123	130	10 137	144	150	157	14 164	171	16 178	17 185	18 191	19	20 205
0.4	202	216	231	245	260	274	289	303	317	332	346	361	375	390	404	418	433
0.5	308	330	352	374	396	418	441	463	485	507	529	551	573	595	617	639	661
_	415	444	474	504	533	563	592	622	652	681	711	741	770	800	829	859	889
0.6	521	558	595	633	670	707	744	782	819	856	893	930	968	1005	1042	1079	1110
0.8	627	672	717	762	807	851	896	941	986	1031	1075	1120	1165	1210	1255	1299	134
0.9	734	786	838	891	943	996	1048	1101	1153	1205	1258	1310	1363	1415	1467	1520	157
1	840	900	960	1020	1080	1140	1200	1260	1320	1380	1440	1500	1560	1620	1680	1740	180
								The number			s the liters o	of gaseous o	xygen consu	med per ho	our. There is	no safety fa	ictor in t
	calculation	. The amou	nt of safety f	actor neede	d should be	determine	d by the tea	m on a case	-by-case bas	sis.							
_						Liter	rs of Liqu	uid Oxyg			er Hour						
-									te Ventil								
	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
0.3	0.12	0.13	0.14	0.15	0.15	0.16	0.17	0.18	0.19	0.20	0.21	0.21	0.22	0.23	0.24	0.25	0.26
0.4	0.25	0.27	0.29	0.31	0.32	0.34	0.36	0.38	0.40	0.41	0.43	0.45	0.47	0.49	0.51	0.52	0.54
	0.39	0.41	0.44	0.47	0.50	0.52	0.55	0.58	0.61	0.63	0.66	0.69	0.72	1.00	0.77	0.80	0.8
0.6	0.52	0.56	0.39	0.65	0.84	0.70	0.93	0.98	1.02	1.07	1.12	1.16	1.21	1.00	1.30	1.35	1.4
0.7	0.78	0.84	0.90	0.95	1.01	1.06	1.12	1.18	1.02	1.29	1.34	1.40	1.46	1.51	1.50	1.62	1.6
0.8				1.11	1.18	1.00	1.31	1.38	1.44	1.51	1.57	1.64	1.70	1.77	1.83	1.90	1.9
0.8	0.92	0.98															
0.8				1.28 column the	1.35 n go down t	1.43 o the correct nount of saf	1.50 t FIO2 row. 1 fety factor ne	1.58 The number eeded shoul	ld be detern	nined by the	team on a			2.03 ed per hour	2.10 . 1 L liquid c	2.18 xygen = 800	
_	1.05 Find the co	1.13 rrect minute	1.20 e ventilation	1.28 column the	1.35 n go down t	1.43 o the correct nount of saf	1.50 t FIO2 row. 1 fety factor ne	The number eeded shoul Jse Per L	where these Id be determ	intersect is nined by the quid Ox	s the liters o : team on a	of liquid oxy	gen consum				
_	1.05 Find the co	1.13 rrect minute	1.20 e ventilation	1.28 column the	1.35 n go down t	1.43 o the correct nount of saf	1.50 t FIO2 row. 1 fety factor ne	The number eeded shoul Jse Per L	where these Id be determ	intersect is nined by the quid Ox	s the liters o team on a	of liquid oxy	gen consum				L gaseo
_	1.05 Find the co oxygen. The	1.13 mect minute ere is no saf	1.20 e ventilation fety factor in	1.28 column the this calcula	1.35 n go down t tion. The an	1.43 o the correct nount of saf Hc	1.50 t FIO2 row. 1 rety factor no Durs of U	The number eeded shoul Jse Per L Minu	where these Id be determ iter of Li ute Ventil	Intersect is nined by the quid Ox ation	s the liters of team on a ygen	of liquid oxy case-by-case	gen consum e basis.	ed per hour	. 1 L liquid c	xygen = 800	L gaseou
0.9 1 0.3 0.4	1.05 Find the co oxygen. The 4 8.36 3.96	1.13 mect minute re is no saf 5 7.80 3.70	1.20 a ventilation fety factor in 6 7.31 3.46	1.28 column the this calcula	1.35 n go down t tion. The an	1.43 o the correct nount of saf Ho 9	1.50 t FIO2 row. 1 rety factor no Durs of U 10	Ihe number eeded shoul Jse Per L Minu 11	where these Id be determ iter of Li ute Ventil 12	quid Ox ation 13	ygen 14 4.88 2.31	of liquid oxy case-by-case	gen consum e basis. 16	ed per hour	1 L liquid c	19	20 3.90
0.9 1 0.3 0.4 0.5	1.05 Find the co oxygen. The 4 8.36 3.96 2.59	1.13 rrect minute ere is no saf 5 7.80 3.70 2.42	1.20 e ventilation fety factor in 6 7.31 3.46 2.27	1.28 column the this calcula 6.88 3.26 2.14	1.35 n go down t tion. The an 8 6.50 3.08 2.02	1.43 o the correct nount of saf 9 6.16 2.92 1.91	1.50 t FIO2 row. 1 rety factor no ours of U 10 5.85 2.77 1.82	Jse Per L Minu 5.57 2.64 1.73	iter of Li iter of Li ite Ventil 12 5.32 2.52 1.65	a Intersect is nined by the ation 13 5.09 2.41 1.58	ygen 14 4.88 2.31 1.51	15 4.68 2.22 1.45	16 4.50 2.13 1.40	ed per hour 17 4.33 2.05 1.35	11 Ilquid c 18 4.18 1.98 1.30	19 4.04 1.91 1.25	20 3.90 1.85 1.21
0.9 1 0.3 0.4 0.5 0.6	1.05 Find the co oxygen. The 8.36 3.96 2.59 1.93	1.13 rrect minute rre is no saf 7.80 3.70 2.42 1.80	1.20 a ventilation fety factor in 6 7.31 3.46 2.27 1.69	1.28 column the this calcula 6.88 3.26 2.14 1.59	1.35 n go down t tion. The an 8 6.50 3.08 2.02 1.50	1.43 o the correct nount of saf 9 6.16 2.92 1.91 1.42	1.50 t FIO2 row.1 rety factor no ours of U 10 5.85 2.77 1.82 1.35	Ise Per L Minu 5.57 2.64 1.73 1.29	where these id be determ iter of Li ite Ventil 12 5.32 2.52 1.65 1.23	a intersect is nined by the aquid Ox ation 13 5.09 2.41 1.58 1.17	ygen 14 4.88 2.31 1.51 1.13	15 4.68 2.22 1.45 1.08	16 4.50 2.13 1.40	17 4.33 2.05 1.35 1.00	1L liquid c 18 4.18 1.98 1.30 0.96	19 4.04 1.91 1.25 0.93	20 3.90 1.85 1.21 0.90
0.9 1 0.3 0.4 0.5 0.6 0.7	1.05 Find the co oxygen. The 4 8.36 3.96 2.59 1.93 1.54	1.13 rrect minute rre is no saf 7.80 3.70 2.42 1.80 1.43	1.20 eventilation fety factor in 6 7.31 3.46 2.27 1.69 1.34	1.28 column the this calcula 6.88 3.26 2.14 1.59 1.26	1.35 n go down t tition. The an 8 6.50 3.08 2.02 1.50 1.19	1.43 o the correct nount of saf 9 6.16 2.92 1.91 1.42 1.13	1.50 t FIO2 row. 1 ety factor no bours of U 10 5.85 2.77 1.82 1.35 1.07	Ise Per L Minu 11 5.57 2.64 1.73 1.29 1.02	where these id be determ iter of Li iter Ventil 12 5.32 2.52 1.65 1.23 0.98	a Intersect is nined by the aquid Ox ation 13 5.09 2.41 1.58 1.17 0.93	s the liters of team on a second seco	15 4.68 2.22 1.45 1.08 0.86	16 4.50 2.13 1.04 0.83	17 4.33 2.05 1.35 1.00 0.80	12 liquid c 18 4.18 1.98 1.30 0.96 0.77	19 4.04 1.91 1.25 0.93 0.74	20 3.90 1.8 1.2 0.90 0.7
0.9 1 0.3 0.4 0.5 0.6 0.7 0.8	1.05 Find the co oxygen. The 8.36 3.96 2.59 1.93 1.54 1.28	1.13 rrect minute rre is no saf 7.80 3.70 2.42 1.80 1.43 1.19	1.20 e ventilation fety factor in 3.46 2.27 1.69 1.34 1.12	1.28 column the this calcula 6.88 3.26 2.14 1.59 1.26 1.05	1.35 n go down t tion. The an 8 6.50 3.08 2.02 1.50 1.19 0.99	1.43 o the correct nount of saf 9 6.16 2.92 1.91 1.42 1.13 0.94	1.50 t FIO2 row. 1 ety factor no Durs of U 10 5.85 2.77 1.82 1.35 1.07 0.89	The number eeded shoul Jse Per L 11 5.57 2.64 1.73 1.29 1.02 0.85	where these id be determ iter of Li ite Ventil 12 5.32 2.52 1.65 1.23 0.98 0.81	a Intersect Is Intersect Is Intersect Is Intersect Is Intersection Int	s the liters of team on a ygen 14 4.88 2.31 1.51 1.13 0.90 0.74	15 4.68 2.22 1.45 0.86 0.71	16 4.50 2.13 1.40 0.83 0.69	17 4.33 2.05 1.35 1.00 0.80 0.66	18 4.18 1.98 1.30 0.96 0.77 0.64	19 4.04 1.91 1.25 0.93 0.74 0.62	20 3.90 1.85 1.21 0.90 0.77 0.66
0.9 1 0.3 0.4 0.5 0.6 0.7	1.05 Find the co oxygen. The 4 8.36 3.96 2.59 1.93 1.54	1.13 rrect minute rre is no saf 7.80 3.70 2.42 1.80 1.43	1.20 eventilation fety factor in 6 7.31 3.46 2.27 1.69 1.34	1.28 column the this calcula 6.88 3.26 2.14 1.59 1.26	1.35 n go down t tition. The an 8 6.50 3.08 2.02 1.50 1.19	1.43 o the correct nount of saf 9 6.16 2.92 1.91 1.42 1.13	1.50 t FIO2 row. 1 ety factor no bours of U 10 5.85 2.77 1.82 1.35 1.07	Ise Per L Minu 11 5.57 2.64 1.73 1.29 1.02	where these id be determ iter of Li iter Ventil 12 5.32 2.52 1.65 1.23 0.98	a Intersect is nined by the aquid Ox ation 13 5.09 2.41 1.58 1.17 0.93	s the liters of team on a second seco	15 4.68 2.22 1.45 1.08 0.86	16 4.50 2.13 1.04 0.83	17 4.33 2.05 1.35 1.00 0.80	12 liquid c 18 4.18 1.98 1.30 0.96 0.77	19 4.04 1.91 1.25 0.93 0.74	20 3.9 1.8 1.2 0.9 0.7 0.6 0.5
0.9 1 0.3 0.4 0.5 0.6 0.7 0.8	1.05 Find the co oxygen. The 4 8.36 3.96 2.59 1.93 1.54 1.28 1.09 0.95 Find the co	1.13 rrect minute re is no saft 5 7.80 3.70 2.42 1.80 1.43 1.19 1.02 0.89 rrect minute	1.20 eventilation fety factor in 6 7.31 3.46 2.27 1.69 1.34 1.12 0.95 0.83 eventilation	1.28 column the this calcula 6.88 3.26 2.14 1.59 1.26 1.05 0.90 0.78 column the	1.35 n go down t tion. The an 8 6.50 3.08 2.02 1.50 1.19 0.85 0.74 n go down t	1.43 o the correct nount of saft 9 6.16 2.92 1.91 1.42 1.13 0.94 0.80 0.70 o the correct	1.50 t FIO2 row. 1 rety factor no cours of U 10 5.85 2.77 1.82 1.35 1.07 0.89 0.76 0.67 t FIO2 row. 1	Ise Per L Jse Per L Minu 11 5.57 2.64 1.29 1.02 0.85 0.73	where these id be determ iter of Li 12 5.32 2.52 1.65 1.23 0.98 0.81 0.69 0.61 where these	e Intersect I: nined by the quid Ox ation 13 5.09 2.41 1.58 1.17 0.93 0.78 0.66 0.58	ygen 14 4.88 2.31 1.51 1.13 0.90 0.74 0.64 0.56 s the number	15 4.68 2.22 1.45 0.71 0.61 0.53 r of hours th	16 4.50 2.13 1.40 0.83 0.69 0.59 0.51 mata 1L of l	17 4.33 2.05 1.35 1.00 0.66 0.57 0.49	18 4,18 4,18 1.98 1.30 0.96 0.77 0.64 0.55 0.48 m will opera	19 4.04 1.91 1.25 0.93 0.74 0.62 0.53 0.46 te the ventil	20 3.90 1.85 1.21 0.90 0.72 0.66 0.51 0.44
0.9 1 0.3 0.4 0.5 0.6 0.7 0.8	1.05 Find the co oxygen. The 4 8.36 3.96 2.59 1.93 1.54 1.28 1.09 0.95 Find the co	1.13 rrect minute re is no saft 5 7.80 3.70 2.42 1.80 1.43 1.19 1.02 0.89 rrect minute	1.20 eventilation fety factor in 6 7.31 3.46 2.27 1.69 1.34 1.12 0.95 0.83 eventilation	1.28 column the this calcula 6.88 3.26 2.14 1.59 1.26 1.05 0.90 0.78 column the	1.35 n go down t tion. The an 8 6.50 3.08 2.02 1.50 1.19 0.85 0.74 n go down t	1.43 o the correct nount of saft 9 6.16 2.92 1.91 1.42 1.13 0.94 0.80 0.70 o the correct	1.50 t FIO2 row. 1 rety factor no burs of U 10 5.85 2.77 1.82 1.35 1.07 0.89 0.76 0.67 t FIO2 row. 1 calculation.	International International Jse Per L Minu 11 5.57 2.64 1.73 1.29 1.02 0.85 0.73 0.63 (he number)	where these id be determ iter of Li 12 5.32 2.52 1.65 1.23 0.98 0.81 0.69 0.61 where these t of safety fa	intersect is intersect is intersect is intersect is intersect is intersect is intersect is intersect is	s the liters of team on a ' ygen 14 4.88 2.31 1.51 1.13 0.90 0.74 0.64 0.56 s the numbed should be	15 4.68 2.22 1.45 0.71 0.61 0.53 r of hours th	16 4.50 2.13 1.40 0.83 0.69 0.59 0.51 mata 1L of l	17 4.33 2.05 1.35 1.00 0.66 0.57 0.49	18 4,18 4,18 1.98 1.30 0.96 0.77 0.64 0.55 0.48 m will opera	19 4.04 1.91 1.25 0.93 0.74 0.62 0.53 0.46 te the ventil	20 3.9 1.8 1.2 0.9 0.7 0.6 0.5 0.4
0.9 1 0.3 0.4 0.5 0.6 0.7 0.8	1.05 Find the co oxygen. The 4 8.36 3.96 2.59 1.93 1.54 1.28 1.09 0.95 Find the co	1.13 rrect minute re is no saft 5 7.80 3.70 2.42 1.80 1.43 1.19 1.02 0.89 rrect minute	1.20 eventilation fety factor in 6 7.31 3.46 2.27 1.69 1.34 1.12 0.95 0.83 eventilation	1.28 column the this calcula 6.88 3.26 2.14 1.59 1.26 1.05 0.90 0.78 column the	1.35 n go down t tion. The an 8 6.50 3.08 2.02 1.50 1.19 0.85 0.74 n go down t	1.43 o the correct nount of saft 9 6.16 2.92 1.91 1.42 1.13 0.94 0.80 0.70 o the correct	1.50 t FIO2 row. 1 rety factor no burs of U 10 5.85 2.77 1.82 1.35 1.07 0.89 0.76 0.67 t FIO2 row. 1 calculation.	The number eeded shoul Jse Per L Minu 11 5.57 2.64 1.73 1.29 1.02 0.85 0.73 0.63 (he number The amount s of Use	where these id be determ iter of Li 12 5.32 2.52 1.65 1.23 0.98 0.81 0.69 0.61 where these t of safety fa	e Intersect I: inleed by the inleed by the i	s the liters of team on a ' ygen 14 4.88 2.31 1.51 1.13 0.90 0.74 0.64 0.56 s the numbed should be	15 4.68 2.22 1.45 0.71 0.61 0.53 r of hours th	16 4.50 2.13 1.40 0.83 0.69 0.59 0.51 mata 1L of l	17 4.33 2.05 1.35 1.00 0.66 0.57 0.49	18 4,18 4,18 1.98 1.30 0.96 0.77 0.64 0.55 0.48 m will opera	19 4.04 1.91 1.25 0.93 0.74 0.62 0.53 0.46 te the ventil	20 3.9 1.8 1.2 0.9 0.7 0.6 0.5 0.4
0.9 1 0.3 0.4 0.5 0.6 0.7 0.8	1.05 Find the co oxygen. The 4 8.36 3.96 2.59 1.93 1.54 1.28 1.09 0.95 Find the co	1.13 rrect minute re is no saft 5 7.80 3.70 2.42 1.80 1.43 1.19 1.02 0.89 rrect minute	1.20 eventilation fety factor in 6 7.31 3.46 2.27 1.69 1.34 1.12 0.95 0.83 eventilation	1.28 column the this calcula 6.88 3.26 2.14 1.59 1.26 1.05 0.90 0.78 column the	1.35 n go down t tion. The an 8 6.50 3.08 2.02 1.50 1.19 0.85 0.74 n go down t	1.43 o the correct nount of saft 9 6.16 2.92 1.91 1.42 1.13 0.94 0.80 0.70 o the correct	1.50 t FIO2 row. 1 rety factor no burs of U 10 5.85 2.77 1.82 1.35 1.07 0.89 0.76 0.67 t FIO2 row. 1 calculation.	The number eeded shoul Jse Per L Minu 11 5.57 2.64 1.73 1.29 1.02 0.85 0.73 0.63 (he number The amount s of Use	where these id be determ iter of Li 12 5.32 1.65 1.23 0.98 0.81 0.69 0.61 where these t of safety fa Per Full	e Intersect I: inleed by the inleed by the i	s the liters of team on a ' ygen 14 4.88 2.31 1.51 1.13 0.90 0.74 0.64 0.56 s the numbed should be	15 4.68 2.22 1.45 0.71 0.61 0.53 r of hours th	16 4.50 2.13 1.40 0.83 0.69 0.59 0.51 mata 1L of l	17 4.33 2.05 1.35 1.00 0.66 0.57 0.49	18 4,18 4,18 1.98 1.30 0.96 0.77 0.64 0.55 0.48 m will opera	19 4.04 1.91 1.25 0.93 0.74 0.62 0.53 0.46 te the ventil	20 3.9% 1.8% 1.22 0.9% 0.77 0.66 0.55 0.44 3 tor. 1 L
0.9 1 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.9 1	1.05 Find the co oxygen. The 4 8.36 3.96 2.59 1.93 1.54 1.28 1.09 0.95 Find the co	1.13 rrect minute re is no saf 7.80 3.70 2.42 1.80 1.43 1.19 1.02 0.89 rrect minute en = 800 Lgr 5 159	1.20 eventilation retyfactor in 3.46 2.27 1.69 1.34 1.12 0.95 0.83 eventilation aseous oxyge 6 1.49	1.28 column the this calcula 6.88 3.26 2.14 1.59 1.26 1.05 0.90 0.78 column the en. There is 7 140	1.35 n go down t tilon. The an 6.50 3.08 2.02 1.50 0.74 n go down t no safety fa 8 133	1.43 o the correct nount of saf 9 6.16 2.92 1.91 1.42 1.13 0.94 0.80 0.70 o the correct ctor in this of 9 126	1.50 t FIO2 row. 1 rety factor no burs of U 10 5.85 2.77 1.82 1.07 0.89 0.76 0.67 t FIO2 row. 1 calculation. Minute 10 119	Interview Interview Jse Per L Minu 11 5.57 2.64 1.73 1.29 1.02 1.03 0.63 O.63 0.63 The number The amount s of Use Minu 11 114	where these id be determ iter of Li 12 5.32 2.52 1.65 1.23 0.98 0.81 0.69 0.61 where these t of safety fa Per Full ute Ventil	a lintersect i: inleed by the aquid Ox ation 13 5.09 2.41 1.58 1.17 0.93 0.78 0.68 1.17 0.78 0.58 1.17 0.58	s the liters of team on a ' ygen 14 4.88 2.31 1.51 1.13 0.90 0.74 0.64 0.56 s the numble d should be er	f liquid oxy ase-by-ase 4.68 2.22 1.45 1.08 0.86 0.71 0.61 0.53 r of hours tt determined	16 4.50 2.13 1.40 1.04 0.83 0.69 0.51 hat a 1 L of I by the tean	17 4.33 2.05 1.35 1.00 0.66 0.57 0.49	18 4.18 1.98 1.30 0.96 0.77 0.64 0.55 0.48 n will opera by case bas	19 4.04 1.91 1.25 0.93 0.74 0.62 0.53 0.46 te the ventil is.	20 3.90 1.85 1.21 0.90 0.77 0.66 0.51 0.44 3 tor. 1 L 20 80
0.9 1 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.9 1 1	1.05 Find the co oxygen. The 4 8.36 3.96 2.59 1.93 1.54 1.28 1.09 0.95 Find the co Ilquid oxyg Find the co Ilquid oxyg	1.13 rrect minute re is no saf 5 7.80 3.70 2.42 1.80 1.49 1.02 0.89 rrect minute en = 800 L go 5 159 75	1.20 eventilation fety factor in 6 7.31 3.46 2.27 1.69 1.34 1.12 0.95 0.83 eventilation asceus oxyge 6 149 71	1.28 column the this calcula 7 6.88 3.26 2.14 1.59 1.26 1.05 0.90 0.78 column the en. There is 7 140 67	1.35 n go down t tion. The an 6.50 3.08 2.02 1.50 1.19 0.99 0.85 0.74 n go down t no safety fa 8 133 63	1.43 o the correct nount of saf 9 6.16 2.92 1.91 1.42 1.13 0.94 0.80 0.70 o the corrector in this of 9 126 60	1.50 t FIO2 row. 1 rety factor no burs of U 10 5.85 2.77 1.82 1.35 1.07 0.89 0.76 0.67 t FIO2 row. 1 calculation. Minute 10 57	Image: Construct of the number of t	where these id be determ iter of Li 12 5.32 2.52 1.65 1.23 0.98 0.61 0.69 0.61 where these t of safety fa Per Full 12 109 51	e Intersect I: Inned by the quid Ox ation 13 5.09 2.41 1.58 1.17 0.93 0.78 0.66 0.58 c Intersect I: ctor needed D Cylind ation 13 104 49	s the liters of team on a ygen 14 4.88 2.31 1.51 1.13 0.90 0.74 0.64 0.56 s the numbed s should be er 14 99 47	f liquid oxy ase-by-ase 4.68 2.22 1.45 1.08 0.71 0.61 0.53 r of hours th determined 15 96 45	16 4.50 2.13 1.40 1.04 0.83 0.69 0.59 0.51 by the team	17 4.33 2.05 1.35 1.00 0.80 0.66 0.57 0.49 Iquid oxygen non a case-	18 4.18 4.18 1.98 1.30 0.96 0.77 0.64 0.55 0.48 m will opera by-case bas	19 4.04 1.91 1.25 0.93 0.74 0.53 0.46 te the ventil is. 19 82 39	20 3.99 1.88 1.22 0.99 0.77 0.66 0.55 0.44 ator.1L
0.9 1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 0.3 0.4 0.5	1.05 Find the co oxygen. The 4 8.36 3.96 2.59 1.93 1.54 1.28 1.09 0.95 Find the co liquid oxyg Find the co liquid oxyg 4 171 81 53	1.13 rrect minute re is no saf 5 7.80 3.70 2.42 1.80 1.43 1.19 1.02 0.89 rrect minute en = 800 Lgs 5 159 75 49	1.20 eventilation fety factor in 6 7.31 3.46 2.27 1.69 1.34 1.12 0.95 0.83 eventilation aseous oxyge 6 1.49 71 46	1.28 column the this calcula () () () () () () () () () (1.35 n go down t tion. The an 8 6.50 3.08 2.02 1.50 1.19 0.99 0.85 0.74 n go down t no safety fa 8 133 63 41	1.43 o the correct nount of saf 9 6.16 2.92 1.91 1.42 1.13 0.94 0.80 0.70 o the corrector in this of 9 126 60 39	1.50 FIO2 row. 1 rety factor no DURS of U 10 5.85 2.77 1.82 1.35 1.07 0.89 0.76 0.67 tFIO2 row. 1 calculation. Minute: 10 57 37	Second Stress Jse Per L Minu 11 5.57 2.64 1.73 1.29 1.02 0.85 0.73 0.63 file number s of Use Minu 11 54 35	where these id be determ iter of Li 12 5.32 2.52 1.65 1.23 0.98 0.81 0.69 0.61 where these t of safety fa Per Full 12 109 51 34	e Intersect I: inleed by the inleed by the i	s the liters of team on a ygen 14 4.88 2.31 1.51 1.13 0.90 0.74 0.64 0.56 s the numble d should be er 14 99 47 31	15 4.68 2.22 1.45 1.08 0.71 0.61 0.53 r of hours th determined 15 96 45 30	16 4.50 2.13 1.40 1.04 0.83 0.69 0.59 0.51 by the tean 16 92 43 28	17 4.33 2.05 1.35 1.00 0.80 0.57 0.49 iquid oxygen n on a case-	18 4.18 4.18 1.98 1.30 0.96 0.77 0.64 0.55 0.48 n will opera by-case bas by-case bas 18 85 40 26	19 4.04 1.91 1.25 0.93 0.74 0.62 0.53 0.46 te the ventil is.	200 3.90 1.80 1.22 0.99 0.77 0.60 0.52 0.44 ator.11 200 80 388 25
0.9 1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 0.3 0.4 0.5 0.6	1.05 Find the co oxygen. The 8.36 3.96 2.59 1.93 1.54 1.28 1.09 0.95 Find the co liquid oxyg Find the co liquid oxyg 4 171 81 53 39	1.13 rrect minute re is no saft 7.80 3.70 2.42 1.80 1.43 1.19 1.02 0.89 rrect minute en = 800 Lgs 5 159 75 49 37	1.20 eventilation fety factor in 6 7.31 3.46 2.27 1.69 1.34 1.12 0.95 0.83 eventilation aseous oxyge 6 149 71 46 34	1.28 column the this calcula 6.88 3.26 2.14 1.59 1.26 1.05 0.90 0.78 column the en. There is 7 140 67 44 32	1.35 n go down t tion. The an 8 6.50 3.08 2.02 1.50 1.19 0.99 0.85 0.74 n go down t no safety fa 8 133 63 41 31	1.43 o the correct nount of safe 9 6.16 2.92 1.91 1.42 1.13 0.94 0.80 0.70 o the correct ctor in this of 9 126 60 39 29	1.50 FI02 row.1 rety factor no burs of U 10 5.85 2.77 1.82 1.35 1.07 0.89 0.76 0.67 tFI02 row.1 calculation. Minute: 10 119 57 37 28	International International Jse Per L Minu 11 5.57 2.64 1.73 1.29 1.02 0.85 0.73 0.63 0.63 The number 11 114 54 35 26	where these id be determ iter of Li 12 5.32 2.52 1.65 1.23 0.98 0.81 0.69 0.61 where these t of safety fa Per Full 12 109 51 34 25	e Intersect I: inleed by the inleed by the i	s the liters of team on a ' ygen 14 4.88 2.31 1.51 1.13 0.90 0.74 0.64 0.56 s the numble d should be er 14 99 47 31 23	15 4.68 2.22 1.45 1.08 0.86 0.71 0.61 0.53 r of hours tt determined 45 30 22	16 4.50 2.13 1.40 0.69 0.51 hat a 1L of I by the tean 16 223 23 21	17 4.33 2.05 1.35 1.00 0.80 0.66 0.57 0.49 iquid oxygen n on a case-	18 4.18 1.98 1.30 0.96 0.77 0.64 0.55 0.48 n will opera by-case bas by-case bas 18 85 40 26 20	19 4.04 1.91 1.25 0.93 0.74 0.62 0.53 0.46 te the ventil is. 19 82 39 26 19	200 3.90 1.88 1.22 0.90 0.77 0.66 0.52 0.54 4 ator. 1 L 20 800 800 838 25 18
0.9 1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.9 1	1.05 Find the co oxygen. The 8.36 3.96 2.59 1.93 1.54 1.28 1.09 0.95 Find the co liquid oxyg Find the co liquid oxyg 4 171 81 53 39 31	1.13 rrect minute re is no saf 7.80 3.70 2.42 1.80 1.43 1.19 1.02 0.89 rrect minute en = 800 L gs 5 159 75 49 37 29	1.20 eventilation fety factor in 7.31 3.46 2.27 1.69 1.34 1.12 0.95 0.83 eventilation aseous oxyge 6 149 71 46 34 27	1.28 column the this calcula 6.88 3.26 2.14 1.59 1.26 1.05 0.90 0.78 column the en. There is 7 140 67 4 32 26	1.35 n go down t tition. The an 6.50 3.08 2.02 1.50 0.74 n go down t no safetyfa 8 133 63 41 31 24	1.43 o the correct nount of saf 9 6.16 2.92 1.91 1.43 0.94 0.80 0.70 o the correct ctor in this of 9 126 60 39 29 23	1.50 t FIO2 row. 1 rety factor no burs of U 10 5.85 2.77 1.82 1.35 2.77 1.82 1.35 0.76 0.76 0.76 0.76 0.67 t FIO2 row. 1 calculation. Minute 10 119 57 37 28 22	Ise Per L Minu 11 5.57 2.64 1.73 1.29 1.02 0.85 0.73 0.63 0.63 s of Use Minu 11 14 54 256 21	where these id be determ iter of Li iter of Li ite Ventil 12 5.32 2.52 1.65 1.23 0.98 0.81 0.69 0.61 0.69 0.61 0.69 0.61 vhere these cof safety fa Per Full 12 109 51 34 25 20	intersect is inned by the inned	ygen 14 4.88 2.31 1.51 1.13 0.90 0.74 0.64 0.56 s the numbed d should be d should be er 14 99 47 31 23 18	15 15 4.68 2.22 1.45 1.08 0.71 0.61 0.53 r of hours th determined 15 96 45 30 22 18	16 4.50 2.13 1.40 1.04 0.83 0.69 0.51 1.40 1.04 2.51 1.40 1.04 1.04 2.13 1.40 1.04 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13	17 4.33 2.05 1.35 1.00 0.80 0.65 0.57 0.49 Iquid oxygen on a case-	18 18 4.18 1.98 1.30 0.96 0.77 0.64 0.55 0.48 n will opera by-case bas 18 85 40 26 20 16	19 4.04 1.91 1.25 0.93 0.74 0.62 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53	200 3.90 1.21 0.90 0.77 0.60 0.51 0.44 ator.1L 200 80 388 388 388 15
0.9 1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 0.3 0.4 0.5 0.6 0.7 0.8	1.05 Find the co oxygen. The 4 8.36 3.96 2.59 1.93 1.54 1.28 1.09 0.95 Find the co liquid oxyg Hind the co liquid oxyg 31 26	1.13 rrect minute re is no saf 5 7.80 3.70 2.42 1.80 1.43 1.19 1.02 0.89 rrect minute en = 800 Lgs 5 159 75 49 37 75 49 29 24	1.20 eventilation retyfactor in 6 7.31 3.46 2.27 1.69 1.34 1.12 0.95 0.83 eventilation aseous oxyge 6 149 71 46 34 27 23	1.28 column the this calcula 7 6.88 3.26 2.14 1.59 1.26 1.05 0.90 0.78 column the en. There is 7 140 67 44 32 26 21	1.35 n go down t tition. The an 6.50 3.08 2.02 1.50 1.19 0.99 0.85 0.74 n go down t no safety fa 8 133 63 41 31 24 20	1.43 o the correct nount of saf 9 6.16 2.92 1.91 1.42 1.13 0.94 0.80 0.70 o the correct ctor in this of 9 126 60 39 29 23 19	1.50 t FIO2 row. 1 rety factor no pours of U 10 5.85 2.77 1.82 1.07 0.89 0.76 0.67 t FIO2 row. 1 calculation. Minute: 10 119 57 37 28 22 18	Solution Solution 11 11 5.57 2.64 1.73 1.29 1.02 0.85 0.73 0.63 The number The amount s of Use Minu 11 114 54 35 26 21 17 17	where these iter of Li iter of Li 12 5.32 2.52 1.65 1.23 0.98 0.69 0.61 where these of safety fa Per Full 12 109 51 34 25 20 17	e Intersect I: anned by the quid Ox ation 13 5.09 2.41 1.58 1.17 0.93 0.78 0.66 0.58 0.66 0.58 0.66 0.58 0.78 0.66 0.58 0.78 0.66 0.58 0.78 0.78 0.78 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79	s the liters of team on a ygen 14 4.88 2.31 1.51 1.13 0.90 0.74 0.64 0.56 s the numbed s should be er 14 99 47 31 23 18 15	f liquid oxy ase-by-ase 4,68 2,22 1,45 1,08 0,86 0,71 0,61 0,53 r of hours th determined 15 96 45 30 22 18 15	16 4.50 2.13 1.40 1.04 0.69 0.59 0.51 104 105 105 105 105 105 105 105 105 105 105	17 4.33 2.05 1.35 1.00 0.86 0.57 0.49 Iquid oxygen non a case-	18 4.18 1.98 1.30 0.96 0.77 0.64 0.55 0.48 n will opera by-case bas by-case bas 18 85 40 26 20 16 13	19 4.04 1.91 1.25 0.93 0.74 0.62 0.53 0.46 te the ventil (s. 19 82 39 26 19 15 13	200 3.94 1.83 1.22 0.95 0.77 0.75 0.44 a tor. 1 L 200 800 388 25 18 8 25 12
0.9 1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 0.3 0.4 0.5 0.6 0.7	1.05 Find the co oxygen. The 4 8.36 3.96 2.59 1.93 1.54 1.28 1.09 0.95 Find the co Ilquid oxyg Find the co Ilquid oxyg 31 53 39 31 26 22	1.13 rrect minute re is no saf 7.80 3.70 2.42 1.80 1.43 1.19 1.02 0.89 rrect minute en = 800 L gs 5 159 75 49 37 29	1.20 eventilation fety factor in 7.31 3.46 2.27 1.69 1.34 1.12 0.95 0.83 eventilation aseous oxyge 6 149 71 46 34 27	1.28 column the this calcula 6.88 3.26 2.14 1.59 1.26 1.05 0.90 0.78 column the en. There is 7 140 67 4 32 26	1.35 n go down t tition. The an 6.50 3.08 2.02 1.50 0.74 n go down t no safetyfa 8 133 63 41 31 24	1.43 o the correct nount of saf 9 6.16 2.92 1.91 1.43 0.94 0.80 0.70 o the correct ctor in this of 9 126 60 39 29 23	1.50 t FIO2 row. 1 rety factor no burs of U 10 5.85 2.77 1.82 1.35 2.77 1.82 1.35 0.76 0.76 0.76 0.76 0.67 t FIO2 row. 1 calculation. Minute 10 119 57 37 28 22	Ise Per L Minu 11 5.57 2.64 1.73 1.29 1.02 0.85 0.73 0.63 0.63 s of Use Minu 11 14 54 256 21	where these id be determ iter of Li iter of Li ite Ventil 12 5.32 2.52 1.65 1.23 0.98 0.81 0.69 0.61 0.69 0.61 0.69 0.61 vhere these cof safety fa Per Full 12 109 51 34 25 20	intersect is inned by the inned	ygen 14 4.88 2.31 1.51 1.13 0.90 0.74 0.64 0.56 s the numbed d should be d should be er 14 99 47 31 23 18	15 15 4.68 2.22 1.45 1.08 0.71 0.61 0.53 r of hours th determined 15 96 45 30 22 18	16 4.50 2.13 1.40 1.04 0.83 0.69 0.51 1.40 1.04 2.51 1.40 1.04 1.04 2.13 1.40 1.04 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13	17 4.33 2.05 1.35 1.00 0.80 0.65 0.57 0.49 Iquid oxygen on a case-	18 18 4.18 1.98 1.30 0.96 0.77 0.64 0.55 0.48 n will opera by-case bas 18 85 40 26 20 16	19 4.04 1.91 1.25 0.93 0.74 0.62 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53	200 3.99 1.82 0.90 0.77 0.66 0.55 0.44 ator.11 200 80 80 388 25 5 18

Appendix B: Mechanical Ventilation in ARDS

Volume Control Ventilation

- 1. Set the I:E ratio at 1:2 to 1:4. The 731 ventilator defaults to a 1:2.5 I:E Ratio.
- 2. Set PEEP and FiO2 according to ARDSNet ARMA Trial PEEP table to achieve SaO₂ 92-96%.¹ Note that the LTV 1000 is limited to PEEP 20 and the 731 limited to PEEP 25.
- Set tidal volume at 6 cc/Kg and note peak inspiratory pressure (PIP).² If necessary, decrease tidal volume by 1 cc/Kgas needed to keep peak inspiratory pressure ≤ 35 cm H₂O (preferably ≤ 30). Do not go below 4 cc/Kg. Use table below as reference for appropriate tidal volume.³
- 4. Adjust respiratory rate to achieve $pH \ge 7.34$. The actual PCO₂ is not important, only the pH.

Pressure Control Ventilation

- 1. Set I time to achieve I:E ratio of 1:2 to 1:4.
- 2. Set PEEP and FiO2 according to ARDSNet ARMA Trial PEEP table to achieve SaO₂ 92-96%.¹ Note that the LTV 1000 is limited to PEEP 20 and the 731 limited to PEEP 25.
- Set inspiratory pressure to achieve a tidal volume of 6 cc/kg. If this value is > 30 cm H₂O, then decrease until it is ≤30 cm H₂O or until tidal volume is 4 cc/kg. Use table below as reference for appropriate tidal volume.³
- 4. Adjust respiratory rate to achieve $pH \ge 7.34$. The actual PCO₂ is not important, only the pH.

Tidal Volumes for Ventilation of Patients with ARDS – ARDSNET ARMA Trial

Height Pre ft in in cm Wt (Kg) 5'6' 5'8" 5'10" 6' 6'2" 6'4" 6'6"

Male Patients – cc's per Kg

, I	leight			4	5	6	7	8	9	10
ft in	in	cm	Pre Wt (Kg)							
5'	60	152	46	180	230	275	320	365	410	455
5'2"	62	157	50	200	250	300	350	400	450	500
5'4"	64	163	55	220	275	330	385	440	490	545
5'6"	66	168	59	235	295	355	415	475	535	595
5'8"	68	173	64	255	320	385	445	510	575	640
5'10"	70	178	69	275	345	410	480	550	615	685
6'	72	183	73	290	365	440	510	585	660	730

Female Patients – cc's per Kg

	PEEP Titration Table - ARDSNet ARMA Trial																
PEEP	5	5	8	8	10	10	10	12	14	14	14	16	18	18	20	22	24
FiO2	0.3	0.4	0.4	0.5	0.5	0.6	0.7	0.7	0.7	0.8	0.9	0.9	0.9	1	1	1	1
	Pa	tients	falling			ea are	not ne		ily too	sick fo	r flight	but ris	sks and		fits sh	ouldt	be

- 1. Increasing PEEP can decrease cardiac output and may cause significant hypotension in hypovolemic patients. Additional volume loading may be necessary to maintain hemodynamics.
- 2. This is a fairly accurate indicator of plateau pressure in our patient population. Plateau pressure is the correct parameter to follow but it cannot be easily measured with the Impact 731 ventilator.
- 3. Measuring the patient's "wingspan" should be used as an estimate of height. Sternum to fingertip multiplied x 2.
- 4. A pH of 7.2 may be an appropriate target if hemodynamics are relatively normal.